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Applications of Current Interest
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Closed die forging

Joule Thomson 
throttling of gases

Fragmentation of liquids

Deep Borehole Disposal 
of nuclear waste

Swelling of 
nuclear 
fuel rods

Clogging of sand bed filters



Molecular Dynamics 
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• Pioneered in 1950s by Bernie Alder.

• Newton’s equations of motion are solved 
using a finite difference integrator

• Generates time ordered sets of positions 
and momenta

• Basic algorithm conserves energy and linear 
momentum.

• Using the machinery of Boltzmann’s 
statistical mechanics, contact can be made 
with classical thermodynamics  - an isolated 
system.

Bernie Alder, inventor of 
The Molecular Dynamics 
Method



Joule Thomson Throttling process
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• The Joule-Thomson effect refers to the drop in 
temperature experienced by a gas flowing 
through a narrow restriction.

• Originated from Joule’s experiments to 
determine the mechanical equivalent of heat.

• The process is now known as Throttling.

• It has played a role in developing our 
understanding of intermolecular forces, is a key 
step in the industrial liquification of gases by the Linde process, and 
the basis of refrigeration. 



NEMD simulation of JT throttling. I

• A non-equilibrium steady state is rapidly established, 
with constancy of mass and energy fluxes.
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Hoover, Hoover and Travis, PRL,112, 144504 (2014). 



Tensor Temperature
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• Results suggest Fourier’s law of heat conduction will 
require modification: 

𝑄" = −𝜅 𝛻𝑇"" + 𝛻𝑇)) /2



Planar Poiseuille/channel Flow I
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Travis and Gubbins, 
JCP, 112, (2000).

• Flow of fluid between two parallel 
crystalline walls driven by an 
external field provides a useful 
method of studying non-
equilibrium steady states.

• The simulation is fully periodic

• A constant force is applied to all 
atoms in the flow direction.

• System remains homogeneous in 
the longitudinal direction.



Planar Poiseuille/channel Flow II
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Results show that a non-local generalisation of Newton’s law of 
viscosity is required:

• With channels as narrow as 10 molecular diameters, 
agreement between Navier-Stokes and simulation is good.

• However, at widths of ~ 5 diameters and less, serious 
deviations occur.

Π-" 𝑧 = −/
0

-

𝜂(𝑧; 𝑧 − 𝑧′)𝛾(𝑧′)𝑑𝑧′



Fragmentation of Liquids. I
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• Fragmentation of liquids has many interesting applications:
e.g atomisation of liquid diesel through a nozzle prior to ignition

• Cavitation is of considerable interest to engineers due to 
its ability to cause wear on components.

• A study of fragmentation of liquids (including cavitation)  is 
also interesting for its own sake: the problem is complex 
involving, surface tension, shockwave formation, viscosity 
and heat conduction.



NEMD algorithm for studying fragmentation in 2D
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The Holian-Grady method

• Infinite checkerboard is linearly expanded 
in time

ηLy

ηLx

• Constant, homogeneous velocity profile is imposed at t = 0, 
thereafter the expansion is adiabatic
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Fragmentation of Liquids. III
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• One (of many!) interesting questions is: 
What is the mechanism for fragmentation?

• Adiabatic expansion of a 2D Lennard-Jones spline fluid 
follows a pathway which crosses through the liquid-
vapour coexistence dome – is it spinodal decomposition?



Expansion pathway in T-ρ plane
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Equilibrium states sampled from expansion pathway
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Clogging of sand bed filters - background
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• The Site Ion Exchange Plant (SIXEP) is designed to reduce 
discharge of Cs and Sr to the sea.

• SIXEP uses a combination of sand bed filters and ion 
exchange columns.

• A regeneration cycle is implemented when clogging occurs.

• What variables does the clogging 
parameter, 𝛾, depend on?

∆𝐻
∆𝐻0

= 1 + 𝛾𝜎 <
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MD Model of filtration

• Bottom elastic 
boundary removed 
when equilibrium is 
reached

• Particles allowed to 
fall between 
scatterers

• Pressure calculated 
at top and bottom

• Expand this model to 
match the experiment

t = 0 t=5000t = 1000Initial conditions



Deep Borehole Disposal (DBD) of HLW / Spent Fuel
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• Determination of the terminal velocity of a sinking waste 
package is important for:

1) Developing a safety case for DBD.

2) Establishing if canisters can be emplaced through a cement 
slug (sink under their own weight).
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Sinking speed?

• 3-pronged approach to this problem:

o Solve Navier-Stokes equations.

o Conduct sinking experiments using 
scale model.

o Model using atomistic simulation 
and SPH

𝑈<
𝜌?𝑅<𝜅A

𝐿𝜇 1 − 𝜅< <

+ 𝑈
−2 1 + 𝜅<

1 + 𝜅< 𝑙𝑛 𝜅 + 1 − 𝜅<

−
𝑅<𝜅<𝑔
𝜇 𝜌G − 𝜌? = 0



NEMD Simulations of flow past solid objects
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• Hard object: circle or rectangle modelled with elastic 
boundaries.

• Fluid atoms modelled with short ranged repulsive potential:

• Conveyor belt boundaries in flow direction drive particles at a 
fixed flow speed. 

𝜙 𝑟 = (1 − 𝑟<)K



Creeping Flow past a disk: Theory
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𝛻𝑝 = 𝜂𝛻<𝒗 − 𝑔𝜌0N𝒆-

𝛻 P 𝒗 = 0

𝛻<𝑝 = 0

• At low Re, the advective term in the NS 
equations can be discarded. 

• For an incompressible fluid we then have:

• The pressure must satisfy Laplace’s equation, 
from which follows the velocity field:

𝑣R = 𝑈S 1 −
𝑎<

𝑟<
𝑐𝑜𝑠𝜃

𝑣Y = −𝑈S 1 −
𝑎<

𝑟<
𝑠𝑖𝑛𝜃



Molecular Dynamics of flow past a confined disk
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R = 45, v = 0.5



Molecular Dynamics of Flow past a confined rectangle
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N = 90,000V = 0.5, L = 160, 2w = 80 



Example of fracture: Ball-plate penetration. I
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• Understanding why materials fail is 
evidently important.

• Length scales involved dictate the use of 
continuum modelling.

• Finite element/volume methods have 
limitations – mesh entanglement, need to 
re-mesh at failure.

• Continuum mechanics is clearly incomplete 
and failure modes have an atomistic origin: 
cracking <- bond breaking.



Example of fracture: Ball-plate penetration. II
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• Use atomistic simulation to build better continuum models; 
use meshless continuum solvers e.g. SPH

• Ball-penetration problem in 2 dimensions provides a useful 
example in which to do this.



Molecular Dynamics – results I
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• Movie showing results from simulations using 8-4 
potential, four different initial ball velocities {1,2,4,8}



Fragmentation of solids by SPAM. I
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Stress tensor

𝜆 = 𝐵 − 𝐺
𝜂 = 𝐺

• Where 𝛌 and 𝛈 are the Lamé constants. In terms of 
the shear and bulk moduli, these are given by

𝜎 = 𝜎`a𝟏 + 𝜆𝟏 𝜵 P 𝒖 + 𝜂 𝜵𝒖 + 𝜵𝒖 e



Fragmentation of solids by MD and SPAM. II
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• In SPAM, strains are not readily available and so the 
deviatoric stress must be obtained indirectly from 
integration of stress rates.

 

σ xx = λ + 2η( ) ε xx + λ ε yy
σ yy = λ + 2η( ) ε yy + λ ε xx
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• Which in turn depend on strain rates, requiring only 
relative velocities and symmetrised particle densities.



Parameterisation I. Equation of state
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Cold lattice energy from pair potential

φm,n r < 2( ) = m
n −m

2 − r2( )n − n
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Minimum energy, 𝛟 = -1, (stress free) when 𝑟 = 1, 𝑣0 =
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𝑣
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Parameterisation I. Equation of state
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Cold lattice energy equation

Cold lattice mechanical equation of state

=> 𝜎`a= −𝑃0



Parameterisation III. Shear modulus
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Shear modulus determined geometrically:

• Apply a small shear strain to an initially stress-free lattice

• Compute the change in energy. Repeat for larger strains.

Bulk modulus from the equation of state:

𝐵0 = −𝑣0
𝑑𝑃
𝑑𝑣 qrqs

G = lim
ε→0

1
V
∂2Φ
∂ε 2



Parameterisation III. Failure models
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Need to account for plastic yield and tensile failure in 
continuum model

Tensile failure model:

1
2
(σ xx +σ yy ) >σ tensile ⇒σ → 0,ρ→ ρ0

Plastic yield – von Mises’ energy based yield criterion

σ shear = σ 2
xy +

1
4

σ xx −σ yy( )2⎡
⎣⎢

⎤
⎦⎥

1/2

>Y → rescale shear stress



Parameterisation IV. Tensile and Yield strength
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Tensile and yield strengths from NEMD tension test.

• Use time varying periodic boundary conditions in longitudinal 
direction to pull material apart:

   Lx (t) = Lx (0) 1+ ε Δt{ }

  
σ xx (t) = − 1

V
pxi

2 / mi + xij f x
ij
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ε xx (t) ≡ ε =

Lx (t)− Lx (0)
Lx (0)

Stress

Engineering Strain



SPAM Ball-Plate penetration – results for {m,n} = 4,8 
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SPAM

MD



Summary
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• Atomistic simulation provides insight and can 
be used to develop new constitutive 
equations

• Provides parameters for SPH – important 
validation step

• Improved models for surface tension, Fourier 
heat flow and viscous flow are emerging from 
this work.

• Using home-built codes to enable exploration 
of weight functions and boundary conditions.  


