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Molecular Dynamics

* Pioneered in 1950s by Bernie Alder.

* Newton’s equations of motion are solved
using a finite difference integrator

Bernie Alder, inventor of

The Molecular Dynamics  * (Generates time ordered sets of positions
Method
e and momenta

Basic algorithm conserves energy and linear
momentum.

Using the machinery of Boltzmann’s
statistical mechanics, contact can be made
with classical thermodynamics - an isolated
system.
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Joule Thomson Throttling process

* The Joule-Thomson effect refers to the drop in
temperature experienced by a gas flowing
through a narrow restriction.

* Originated from Joule’s experiments to
determine the mechanical equivalent of heat.

* The process 1s now known as Throttling.

It has played a role 1n developing our
understanding of intermolecular forces, 1s a key
step 1n the industrial liquification of gases by the Linde process, and
the basis of refrigeration.
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NEMD simulation of JT throttling. |

* A non-equilibrium steady state is rapidly established,

with constancy of mass and energy fluxes. ., ___ it configuration
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Tensor Temperature

Temperature profiles Temperature profiles
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« Results suggest Fourier’s law of heat conduction will
require modification:

Qx = —K(VTyy + VTyy)/2
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Planar Poiseuille/channel Flow |

* Flow of fluid between two parallel e aa'a'a'a'a
crystalline walls driven by an W \
external field provides a useful i} o
method of studying non- ] o §
equilibrium steady states. : &

o

* The simulation is fully periodic \ v

« A constant force is applied to all o
atoms in the flow direction. 0

« System remains homogeneous in Travis and Gubbins,

the longitudinal direction. JCP, 112, (2000).
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Transverse velocity

Planar Poiseuille/channel Flow Il

~
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* With channels as narrow as 10 molecular diameters,

agreement between Navier-Stokes and simulation is good.

« However, at widths of ~ 5 diameters and less, serious

deviations occur.
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Viscosity

Distance across channel

Results show that a non-local generalisation of Newton’s law of

viscosity 1s required:

V4

M, (2) = — j n(zz - 2)y(2)dz
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Fragmentation of Liquids. |

Cavitation formation

* Fragmentation of liquids has many interesting applications:
e.g atomisation of liquid diesel through a nozzle prior to ignition

 Cavitation is of considerable interest to engineers due to
its ability to cause wear on components.

* A study of fragmentation of liquids (including cavitation) is
also interesting for its own sake: the problem is complex
involving, surface tension, shockwave formation, viscosity

and heat conduction.
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NEMD algorithm for studying fragmentation in 2D

The Holian-Grady method

* Infinite checkerboard is linearly expanded
In time
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« Constant, homogeneous velocity profile is imposed at t = 0,
thereafter the expansion is adiabatic
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Fragmentation of Liquids. Il

* One (of many!) interesting questions is:
What is the mechanism for fragmentation?

« Adiabatic expansion of a 2D Lennard-Jones spline fluid
follows a pathway which crosses through the liquid-
vapour coexistence dome — is it spinodal decomposition?

Expansion at rate n = 0.107
1
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Expansion pathway in T-p plane
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Expansion at rate n = 0.107
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Clogging of sand bed filters - background

l( LY

* The Site lon Exchange Plant (SIXEP) is designed to reduce
discharge of Cs and Sr to the sea.

SIXEP uses a combination of sand bed filters and ion
exchange columns.

A regeneration cycle is implemented when clogging occurs.

A s
AH, Y

What variables does the clogging
parameter, y, depend on?

T
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MD Model of filtration

- Bottom elastic B SRy
boundary removed
when equilibrium is i35 A
reached o AR AT
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* Particles allowed to At
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Fluid velocity vectors caused
via frontal face pushback

Region 1

Plane in which fluid vectors
equal 0 before tuning into
annular region

« Determination of the terminal velocity of a sinking waste
package is important for:

1) Developing a safety case for DBD.

2) Establishing if canisters can be emplaced through a cement
slug (sink under their own weight).
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Sinking speed?

« 3-pronged approach to this problem:

o Solve Navier-Stokes equations.

0

o Conduct sinking experiments using
scale model.

O0)

o Model using atomistic simulation
and SPH
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NEMD Simulations of flow past solid objects

« Hard object: circle or rectangle modelled with elastic
boundaries.

* Fluid atoms modelled with short ranged repulsive potential:
(r) = (1 —r2)*

« Conveyor belt boundaries in flow direction drive particles at a
fixed flow speed.

VY VYV
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Creeping Flow past a disk: Theory Wi ' .

* Atlow Re, the advective term ih the NS
equations can be discarded.

* For an incompressible fluid we then have:
Vp =nV*v — gpoe,
V.-v=20

« The pressure must satisfy Laplace’s equation, V?p = 0
from which follows the velocity field:
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Molecular Dynamics of Flow past a confined rectangle .
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Example of fracture: Ball-plate penetration. I

R '1

« Understanding why materials fail is
evidently important.

« Length scales involved dictate the use of
continuum modelling.

* Finite element/volume methods have
limitations — mesh entanglement, need to
re-mesh at failure.

« Continuum mechanics is clearly incomplete
and failure modes have an atomistic origin:
cracking <- bond breaking.
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Example of fracture: Ball-plate penetration. Il .

a

 Use atomistic simulation to build better continuum models;
use meshless continuum solvers e.g. SPH

 Ball-penetration problem in 2 dimensions provides a useful
example in which to do this.

L. N=o78480 i




Molecular Dynamics — results |

 Movie showing results from simulations using 8-4
potential, four different initial ball velocities {1,2,4,8}
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Fragmentation of solids by SPAM. |

Stress tensor

0= 0gq1 +211(V-u) + n(Vu + (Vu)")

 Where A and n are the Lamé constants. In terms of
the shear and bulk moduli, these are given by

A=B—-G
n==a
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Fragmentation of solids by MD and SPAM. Il ¢ Y

?r"

« In SPAM, strains are not readily available and so the
deviatoric stress must be obtained indirectly from
integration of stress rates.

N

G.,=(A+2n)é, + A,
6, =(A+2m)e, +Aé, |+ « (V) =é=-3 ;if w,
G, =né, P

« Which in turn depend on strain rates, requiring only
relative velocities and symmetrised particle densities.
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Parameterisation I. Equation of state

Cold lattice energy from pair potential

¢m’n(r<x/§): ~ (2—r2)n— k (2—r2)m

n—m n—m

Minimum energy, ¢ = -1, (stress free) when r =1, vg =

V3
2




n m

Cold lattice mechanical equation of state

d 3 n—1 m—1 i

e nm V V

Pv, =-v, 0 = AP - 2—— >
dv n—m v, V,
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Parameterisation lll. Shear modulus

Bulk modulus from the equation of state:

B (dP)
0= Vo V) ey,

Shear modulus determined geometrically:

* Apply a small shear strain to an initially stress-free lattice
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« Compute the change in energy. Repeat for larger strains.
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Parameterisation Ill. Failure models

Need to account for plastic yield and tensile failure in
continuum model

Plastic yield — von Mises’ energy based yield criterion

172
1 2
C,.. = I:Giy + Z(Gxx — ny) > Y — rescale shear stress

Tensile failure model:

1

E(Gxx+0'yy)>(7 =0 —>0,0—>p,

tensile
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Parameterisation IV. Tensile and Yield strength

l( L)

Tensile and yield strengths from NEMD tension test.

« Use time varying periodic boundary conditions in longitudinal
direction to pull material apart:

L ()= L (0){1+&At}

1 X
Stress 0. (0=—7| 2. p./m+2 DX, ],
i i j>i
L.(1)—-L(0)
L (0)
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SPAM Ball-Plate penetration - results for {m,n} = 4,8
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Summary

« Atomistic simulation provides insight and can
be used to develop new constitutive
equations

* Provides parameters for SPH — important
validation step

* Improved models for surface tension, Fourier EPSRC
heat flow and viscous flow are emerging from Erero Py circe
this work.

‘e
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« Using home-built codes to enable exploration
of weight functions and boundary conditions.




